- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Adams, C (2)
-
Almazán, H (2)
-
Aparicio, B (2)
-
Aranburu, A I (2)
-
Arazi, L (2)
-
Arnquist, I J (2)
-
Auria-Luna, F (2)
-
Ayet, S (2)
-
Azevedo, C_D R (2)
-
Bailey, K (2)
-
Ballester, F (2)
-
Bayo, A (2)
-
Benlloch-Rodríguez, J M (2)
-
Borges, F_I_G M (2)
-
Brodolin, A (2)
-
Byrnes, N (2)
-
Church, E (2)
-
Cid, L (2)
-
Conde, C_A N (2)
-
Contreras, T (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the design and performance of a four-phased radiofrequency (RF) carpet system for ion transport between 200–600 mbar, significantly higher than previously demonstrated RF carpet applications. The RF carpet, designed with a 160 $$\upmu $$ m pitch, is applied to the lateral collection of ions in xenon at pressures up to 600 mbar. We demonstrate transport efficiency of caesium ions across varying pressures, and compare with microscopic simulations made in the SIMION package. The novel use of an N-phased RF carpet can achieve ion levitation and controlled lateral motion in a denser environment than is typical for RF ion transport in gases. This feature makes such carpets strong candidates for ion transport to single ion sensors envisaged for future neutrinoless double-beta decay experiments in xenon gas.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Haefner, J; Navarro, K E; Guenette, R; Jones, B_J P; Tripathi, A; Adams, C; Almazán, H; Álvarez, V; Aparicio, B; Aranburu, A I; et al (, The European Physical Journal C)Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from$$^{83\textrm{m}}$$ Kr calibration electron captures ($$E\sim 45$$ keV), the position of origin of low-energy events is determined to 2 cm precision with bias$$< 1~$$ mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks ($$E\ge ~1.5$$ MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q$$_{\beta \beta }$$ in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.more » « less
An official website of the United States government
